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Abstract. The frequency- and wavevector-dependent conductivity tensor of a two-dimensional
electron gas is determined within a semiclassical model containing two different characteristic
times, a transport time and a lifetime. The velocity shift of a surface acoustic wave, caused
by the piezoelectric coupling, is calculated as a function of magnetic field. The results are
applicable under conditions where the frequency of the surface acoustic wave is comparable to
the cyclotron frequency. The calculated velocity shift is compared to that observed for composite
fermions in the quantum Hall regime near half-filling.

1. Introduction

The two-dimensional electron gas (2DEG) in a magnetic field exhibits a wealth of fascinating
phenomena that reflect the subtle nature of the electron motion in strong magnetic fields,
giving rise to both the integer and the fractional quantum Hall effect. In recent years
there has been increasing experimental evidence [1-6] of the existence of a new kind of
guasiparticle, a composite fermion consisting of an electron with two flux quanta attached
[7, 8]. With the fractional quantum Hall effect being observed at filling factoesjual to

%, % % etc, the filling factorv = % represents the limit from below (as well as from above)

of the hierarchy of filling fractions yielding quantized Hall resistance, but the half-filled
Landau level is not in itself a quantum Hall state.

The composite-fermion picture, as developed by Halperin, Lee and Read [8] (HLR), is
derived from a Chern—Simons transformation applied to the interacting electron gas in a
magnetic field corresponding to the filling facio= % As a result of this transformation the
system may be described approximately in terms of independent quasiparticles, ‘composite
fermions’, moving in a magnetic field of zero average. The theory predicts the existence of
a Fermi surface at exactly half-filling, for which there is now experimental support [1, 3, 6].
At the mean-field level of this description one may use semiclassical transport theory, based
on the Boltzmann equation, for calculating the 2DEG conductivity near the filling factor
of one half. Since measurements of the velocity shift of a surface acoustic wave (SAW)
furnish direct information on the conductivity of the 2DEG, it has become possible to make
a detailed comparison between theory and experiment. A semiclassical calculation of the
conductivity was carried out by HLR by treating the collision integral in the relaxation time
approximation involving a single lifetime.
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The aim of the present paper is to extend previous calculations of the velocity shift
in two respects, both of experimental importance: (1) we allow for the possibility that the
transport time,, differs significantly from the lifetimer; and (2) we consider situations
where the frequency of the SAW is comparable to the cyclotron frequency and compare our
results to those obtained previously in the static limit.

A large difference between the transport time and the lifetime is a characteristic of
two-dimensional electron gases, in which the mobility is limited by scattering from ionized
impurities that are well separated from the two-dimensional layer. For electrons moving
in low magnetic fields the transport time is up to two orders of magnitude larger than the
lifetime [9]. The implications of this for the Shubnikov—de Haas oscillations were discussed
by Coleridgeet al [10]. For composite fermions, the resistivity measurements by Leadley
et al [4] suggest thatr; is about one order of magnitude larger than We therefore
calculate the magnetoconductivity within a model containing two different characteristic
times, a transport time and a lifetime. Our finite-frequency calculations are relevant to the
interpretation of the recent high-frequency SAW measurements by Wéliett [6].

The results that we obtain are applicable both to electrons moving in a weak magnetic
field, and to the quantum Hall regime with composite fermions moving in a efaktive
magnetic field.

In the following section we solve the semiclassical transport equation and derive a
general expression for the conductivity as a function of the magnetic field and the frequency
of the SAW. In section 3 we compare our calculated velocity shift of a SAW to that observed
experimentally in the quantum Hall regime near half-filling. A conclusion is given in
section 4.

2. The semiclassical transport equation

The system that we shall consider is one in which the 2DEG is confined toytipdane,
with a magnetic field in the:-direction, and with an electrical field propagating in the
direction of thex-axis, E o €@,

2.1. Solution of the Boltzmann equation

The aim of the following is to solve the Boltzmann equation

af ~ af

- -V k-Vif=|— . 1

or 7Y U K/ <3f)cm| @
We introduce the deviation functiony, via the conventional definitioff = fo — Y dfo/0s,
where fo is the equilibrium Fermi distribution function. The force term is written as
hk = —eE — ev x B. Expressingk andv in polar coordinates results in

B
—%v X B-VklszwC%

wherew, = e¢B/m* is the cyclotron frequency, and* is the electron effective mass, while
¢ is the angle betweek (or v) and thex-axis. We separate out the derivative of the
equilibrium distribution function via the definition

af . %
(3f>(:ou ='W de
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with the functional /() to be specified below. Asp has the same space and time
dependence as the electrical field, iex €94*~“", the Boltzmann equation becomes

wz—j (0 — qur cOSPY — I(W) = —evp(EycOSp + Eysing)  (2)

since g is along thex-axis. The longitudinal electrical fieldE{) originates in the
piezoelectricity of the medium, while the transverse electrical fi&lg) (s due to charge
build-up at the edges of the 2DEG.

Now the substitutionp = e Xsn¢ with X = qvr/w,., is performed in order to
eliminate thegvr cosp-term in equation (2). Expressing by the series

(o]

V=3 adv 3)

n=—oo

and multiplying by(Zn)—le—""‘/) and integrating ovep from zero to Z one finds

|(mCL)L _ Cl))am f g I(Llj)eflmﬁwl»lxsmw —evfr <E/\’; —_ |Evaa}(>.]m(x) (4)

where theJs denote Bessel functions.
To proceed further it is necessary to specify the form of the collision té(t). Let

us first follow HLR and consider the simplest approximation involving a single relaxation
time, 7:

1Y) = —%. (5)
This leads to
. . d
A+ i(mw. — w)t)a, = —evrt <Ex§ - IEyM)J,,,(X). (6)

The current density is given by
d?k
=2 / @ "t
Inserting the expression for the distribution function one finds

2
Z a /ﬂ COSyp eingofiXSinga
Tm* v = " Sing

Here the summation over spin indices has been carried out, yielding the electron density
n. = k%/27. Written out in components the current density is

2n,e & n
fy = ——— n— Jn (X 7a
o= gy 2 g ) (7a)
) 2n.e & 0J,(X)
=— l . 7b
5 m*vp nzoca X (70)
When the value for, found from equation (6) is inserted, we obtain
00 1 2
0 /
=2 — (X 8
Oyx 0o nZOO 1+ I(na)c — (,L))‘L’ ( ( )) ( a)
1 aJ, (X)
-2 ———, 8b
IUO,,_Z_:OO T a))r J(X) (8b)
> 1 dJ,(X)
0 /
=2 8c
Ty = 00 n:z_:oo 1+i(nw. — o)t < X ) (&)
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with 6§ = n.e?r/m*. The static limit(w = 0) of equations (8)—(8c) was used by Willett
et al [1, 6] for comparison with the measured velocity shift of a surface acoustic wave.

2.2. Extending the relaxation time approximation

We now wish to consider the experimentally important case wherein the transport time
differs from the lifetime due, e.g., to the predominance of small-angle scattering. We
therefore consider an extended relaxation time approximation, with a collision term of the
form

1 . .
() = - (w — (), cosp) cosp — (Y, sing) A sm<p) 9

wherer anda are constants. In this expression for the collision tefin,cosy) is the inner
product

. d
(. cosp) = f 2%y cosg
0 M4

and similarly for(, sing). It should be noted that the solution (6) yields a non-vanishing
value of

2 d(p
(W) =/O glﬂ

but since(y)) is seen to be odd in there is no net change in density when the contributions
from ¢ and —q are added. The use of a simple relaxation time approximation is thus
consistent with the requirements of particle number conservatign- 0, and it is therefore

not necessary to ensure particle conservation by explicitly subtragiingn equation (9).

The collision term (9) has two eigenvaluesrland (1 — A)/t. The latter is associated
with the eigenfunctions cas and sinp, and equals the inverse transport time entering the
d.c. conductivity, as we shall see below.

The Boltzmann equation now has the following form:

Hy = —evpt E COSp + A COSp(WP, cOSp) + A Sing (W, Sing) (20)
in the case where the electric field points along théirection and
HY = —evpTE Sing + A coSp (Y, COSp) + A sing (Y, sing) (11)

when the electric field points along thedirection. HereH is the differential operator
given by

. a .
H=1-lwt + a)cr% + igupT COSP. (12)

The conductivity tensoag given by (8&)—(8c) above is obtained wheh in equations (10)
and (11) is set equal to zero. SineervytH 'cosy is the solution to the Boltzmann
equation (10) withh = 0, one hasr®, = o{(H ' cosp, cosp) and similarly for the other
components.

Now let us consider the case wherdliffers from zero. For convenience we derive the
conductivity in units ofsy. In the absence of the sound wave and the magnetic field, the
conductivity is thus given by, = oy, = 1/(1—1). By inverting the operatoff we then
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find that the elements of the (dimensionless) conductivity tensor must satisfy the following
equations:

0 0 0

Oxx = 0, + A0 Oxx + )Loxyayx
_ 0 0 0

Oyx = 0y + )Loyxoxx + )\nyoyx

Oxy = U)?y + )»Gg,ay_\, + Ao)?xoxy
Oyy = a;,)y + )»a_eyayy + )\,U)Qxaxy.

It is straightforward to solve these four equations for the four elements of the
conductivity tensor, in terms of those corresponding.te- 0. The result is conveniently
expressed in terms of the trace (tr) and determinant (det) of the conductivity teifsor,
obtained forx = 0. One gets:

0 0
o, — rdeto
Oxx = 13a
1 Atro9 4 A2deto® (133)

0
oy = i (1%)
1—Atro9+ A2deto®

o)(,)y — rdeto®
1—Atro®4 A2deto®’

Oyy = (13¢)

From the expressions given ing)8-(8c) and (1&)—(13) we can recover various limiting
forms. Consider first the static, homogeneous case, ¢ = 0. In this case/,(X) = 8.0,
and one finds the d.c. conductivity

fof 1 —w,
oac 0( o > (14)

- 14+ (wetr)2 \ @cTir

where the transport time is given by = /(1 — 1), while og = n.e?t,/m*. Similarly, for
w # 0 while ¢ = B = 0, we recover the Drude expression for the real and imaginary part
of the conductivity.

For finite¢ andw and B = 0, the expressions (&Band (1) reduce to

F(p)

XX T A a o 15
7T 1 AR (B) (19)
for the xx-component, while they-component is
G
(B) (16)

Oyy = 77—~ o
1-AG(B)
with 8 = qvrt/(1 —iwt). The functionsF(8) and G(8) are given by

F(B) = ; 2(1 _ 1) (17)
1—-iwt B2 /1+ B2
and

G(B) =1+ p2F(p) (18)

respectively. Again it is easily seen that equations (15) to (18) reduce to the Drude
expression ifg is set equal to zero.
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3. The velocity shift of a surface acoustic wave

The expressions (B} to (1) for the 2DEG conductivity tensor are applicable both to the
case of electrons moving in low magnetic fields and to the case of composite fermions in
the quantum Hall regime. In this section we shall compare our calculated velocity shift to
SAW measurements in the quantum Hall regime near half-filling.

For composite fermions the applied magnetic field is substituted for withffactive
magnetic field given by

AB =B — Bip (19)
where By, = 2n.¢q is the magnetic field corresponding to exactly half-filling of the lowest
Landau level, anay is the flux quantunik/e. The 2DEG is assumed to be completely spin
polarized by the applied magnetic field so that= k%/47r. The 2DEG resistivity tensor
is given by [8]

P =P+ pcs (20)

whereg is the so-called intrinsic composite-fermion resistivity tensor which is equal to the
inverse of the conductivity tensor given by equationsajit® (1), and pgs is

h 0 1
Pcs=2€2< 1 0 ) (21)
This leads to
15}’)' (‘Za C())
Oxx = 2
(Pcs)xy

as (IOCS)xy > ﬁyyv ﬁyy'

The velocity shift of the SAW depends on the 2DEG conductivity through the coupling
of the piezoelectrically generated electrical field. This leads to a velocity shift of the SAW
reflecting the 2DEG conductivity, [11, 12]:

Avy 2 1
U a—Re —_— (22)
Vg 2 1+ioy/om

wherea?/2 is the piezoelectric coupling constant anglies in the range betwee@ +q) v,
and 2Zv,. A derivation of formula (22) for the velocity shift is given in appendix A.

The parameter values used in the following are similar to those of Wltedt [6]. The
mean free path is taken to he= 0.5 um, the electron density i8, = 1.6 x 10! cm™2,
the composite-fermion effective massnis = 0.8m,, and the background conductivity is
oo = 1/2300%2. This yields a transport time given by = 24.2 ps. The SAW wavelength
and frequency are.saw = 2200 A and fsaw = 10.7 GHz respectively. The resulting
dimensionless parameters afe= 12 andwt, = 1.6. In the expression for the velocity
shift we use the piezoelectric coupling?/2 = 3.2 x 104, ando,, = 35x 107 Q. As
discussed by Willetet al [6] the value ofo, is used as a fitting parameter and differs
somewhat from theoretical expectation.

First we compare the resonances obtained in the static lisnit Q) with the effect of
including the finite frequency in the calculation. In figure 1 we show the calculated velocity
shift for g/ = 12 with wty, equal to 0 and 5. For simplicity we taker. = O corresponding
to t = . The most significant feature of the two curves is that the position of the principal
resonance ahB ~ 0.6 T is only slightly shifted despite the fact that= 0.5, at this
value of the effective field. In addition two other features are noteworthy: (1) a phase shift
of 7 in the field region withA B between @ and 04 T and (2) a shoulder &t B = 0.43 T.
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Figure 1. Velocity shift versus effective magnetic field Figure 2. SAW velocity shift versus effective magnetic
near half-filling of the lowest Landau level. The twofield for the cases = 7 (A = 0) andt = 1y/2
curves represent the static limib & 0) and the effect (A = 0.5).

of a finite frequency ¢ty = 1.6 corresponding to

w/27 = 10.7 GHz).

Looking at the resonance positions in the velocity shift we find a shift of the principal
resonance from\ B = 0.59 to Q62 T, and a shift of the secondary resonance frog2 @o
0.27 T, the latter arising from the above-mentioned phase shift.

In figure 2 we show the velocity shift in the static limit wigii = 12 and forx equal to
0 and 05 corresponding ta = 1, andt = ti;/2 respectively. We observe a suppression of
the amplitude of the oscillations in the velocity shift)ass increased, while the position of
the resonances is unchanged. This is the behaviour that we would qualitatively expect. The
limiting parameter for the number and amplitude of the observed oscillatio@asrisand
an increase of. is, assuming a constant mean free path and thus a congtagifectively
a reduction ofw.r. The opposite effect, i.e. an increase in the number and amplitude of
the oscillations, is obtained if one increasgskeeping the ratio, /T constant. IfA was
taken to be as large as0corresponding ta = 7,/10 the oscillations would be completely
suppressed for the parameters chosen.

4. Conclusion

We have calculated the conductivity of a two-dimensional electron gas from solutions to the
semiclassical Boltzmann equation, taking into account the effects of a finite frequency and
allowing for a difference between the lifetime, and the transport timey,. The resulting
expression for the conductivity tensor is generally applicable and may be used to determine
the velocity shift of a surface acoustic wave under different physical conditions, such as
those of electrons moving in weak magnetic fields or composite fermions in the quantum
Hall regime near half-filling.

In the case of composite fermions we find that the principal resonance in the velocity
shift is only slightly shifted when the SAW frequency is as large as half the cyclotron
frequency at the position of the principal resonance, while more pronounced differences
occur at lower values of the effective magnetic field. When the transport time is larger than
the lifetime, the amplitude of the oscillations in the velocity shift are decreased while the
resonance positions remain unchanged.
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Appendix A. Velocity shift

The derivation given here is based on a simplified model of the system, but yields results
that are quantitatively reliable. The formula for the velocity shift is derived for a bulk wave
moving in thex-direction in a piezoelectric medium containing a 2DEG in tlyeplane at
z equal to zero, following Hutson and White [13].

The equations connecting the mechanical strés@nd the electrical displacemem,
with the mechanical strairy, and the electrical fieldE, are

T =cS—¢E,
D, =eS+¢€E,
D, =¢E,.

Herec is the stiffness constant giving the wave velocity in the absence of the 2BEG,
the piezoelectric coupling constant aads the dielectric permittivity of the piezoelectric
material.

The electric potential is considered as consisting of two parts: one part from the wave
and one part from the induced charge-density fluctuations in the 2DEG:

¢ = ¢w + P2pEG

¢\N — Aé(kx—wr)
$opEG = BNk forz >0
bapEG = Bpekr—entk: for z < 0.

The constants are determined from the boundary conditions|zFef oo the disappearance
of the divergence of the displacement leads to

e 9S —i(kx—owt)
€k? dx © '
At z equal to zero, the continuity of the longitudinal part of the electrical field across the
2DEG implies thatB; = B, (= B). Also atz equal to zero the change in the transverse
part of the displacement is given by the surface charge density,

Dlz — Dzz = 2€kBei(kxiwt) = po.

Differentiating this expression with respect to time, and utilizing the continuity equation

9 dE
o _ iy OB
at ox
one finds
. i E,
—2iwekBE® ) = g
ax
This leads to the following relation betweehand B:
B— 1
11— 2ievy /oy

with vy = w/k.



SAWSs and the magnetoconductivity of a 2DEG 6605

The longitudinal electrical field at = 0 is then given by

IE. e 1 EN
ax € l4ion/(2€v;) dx

leading to
aT e? 1 as  ,3S
—=cl+—— ) —=c—.
ox ce 1+ lo,,/(2¢€v;) ) Ox ox

The relative velocity shift is thus

Av, / 2 1
v = Re C— —1= a—Re — (1)
Vg c 2 1+ioy/om

with the coupling constant? = ¢?/ce depending on the distance of the 2DEG from the
surface ana,, = 2¢v;.

If the 2DEG is situated at the surface, the expressionsfprshould be modified to
on = (€ + €0)vy, Wheree is the vacuum permittivity. If the 2DEG is sufficiently near the
surfaceo,, /v, assumes a value intermediate betweeney and 2.
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